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Summary. Several compounds may exist in LnCl3–MCl mixtures. Those corresponding to the

M2LnCl5 and MLn2Cl7 stoichiometries are formed in a few systems only, with diverse stability strongly

dependent on both the corresponding lanthanide and alkali metal. On the other hand, M3LnCl6 that

occur in most systems have a far larger stability range and melt congruently. These latter compounds

were investigated in the present work by differential scanning calorimetry and electrical conductivity

measurements. The thermodynamic and transport properties were correlated to structural features and

related to the mechanism of compound formation.
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Introduction

Lanthanide halides are used in a number of applications ranging from lighting to
catalysis through pyrochemical reprocessing of nuclear fuel [1–18]. Much has been
done to achieve fundamental insight [19–76] that is required by those many indus-
trial processes still under development. In particular, efforts have been made to
correlate macroscopic and microscopic properties [43, 49, 52, 55, 59, 60, 71].

The mutual solubility of molten lanthanide chlorides (LnCl3) and alkali chlorides
(MCl) has been investigated intensively over the past two decades [77–87]. Several
experimental methods have been used complementarily in order to fully char-
acterise the binary phase diagrams. They include DTA, X-ray, and electrochemical
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techniques, the latter making it possible to identify the nature of phase transitions that
take place in the solid state. They have allowed to distinguish between the formation
of compounds in the solid state (reconstructive phase transition) and their structural
transition (non-reconstructive phase transition).

The LnCl3–MCl binary systems have relatively simple phase diagrams for
the light alkali metal chlorides (LiCl and NaCl) while those including KCl, RbCl,
and CsCl exhibit several compounds of stoichiometry M3LnCl6, M2LnCl5, and
M2Ln2Cl7. All the M3LnCl6 compounds melt congruently, whereas M2LnCl5
and MLn2Cl7 can melt congruently or decompose peritectically. Congruently melt-
ing M2LnCl5 compounds exist only in the systems with lanthanum and cerium
chlorides [77, 78], while MLn2Cl7 happen to be congruently melting in the
sequence K<Rb<Cs at increasing lanthanide atomic numbers, i.e. at decreasing
lanthanide ionic radii [77–87]. Accordingly the congruently melting CsLn2Cl7
exists in all the chloride systems starting from cerium chloride, the RbLn2Cl7
starting from samarium chloride and KLn2Cl7 from europium chloride. The
LaCl3–KCl system constitutes an exception to the previous description since it
includes a single congruently melting compound, K2LaCl5 [77]. Systematic inves-
tigations of the LnCl3-based melts are conducted in our laboratory using different
experimental, theoretical, and numerical techniques [39–76].

As far as thermodynamics is involved, we have paid much attention to the
M3LnCl6 stoichiometric compounds that exist in most of the LnCl3–MCl systems
and have a more extended stability range than those of different stoichiometry.
Very little is available in literature in this respect and the present work reports
these thermodynamic investigations performed in conjunction with electrical con-
ductivity measurements.

Results and Discussion

We determined the temperatures and enthalpies of formation or solid–solid phase
transition as well as of fusion of the M3LnCl6 compounds (Ln¼La, Ce, Pr, Nd, Tb;
M¼K, Rb, Cs). They are presented in Tables 1–3 together with almost all existing
literature data.

All the K3LnCl6 compounds (Table 1) are not stable at low temperatures. They
form at higher temperatures from K2LnCl5 and KCl. During cooling, they decom-
pose back to the above components. Their formation is a ‘‘reconstructive’’ phase
transition [88].

Results in Table 1 clearly show that the formation and fusion temperatures,
Tform and Tfus are dependent on the ionic radius of the lanthanide. For the K3LnCl6
compounds, the smaller the ionic lanthanide radius, the lower the formation tem-
perature and the higher the melting temperature.

Figure 1 shows the existence range, i.e. the stability of the K3LnCl6 com-
pounds: the temperatures of fusion determined in the present work (Table 1) are
plotted vs. the lanthanide ionic radii together with the temperatures of formation
available from literature [81–83], that were obtained from DTA and e.m.f. mea-
surements. The linear dependence of both Tform and Tfus on lanthanide ionic radius
makes it possible to estimate the formation and fusion temperatures of the other
K3LnCl6 compounds. Such an estimation was performed and indicated that all
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K3LnCl6 are not stable at 0 K, in agreement with Seiffert’s conclusion from ther-
mochemical calculations based on e.m.f. measurements [77–80, 85, 88].

This behaviour has been addressed in literature and it has been postulated that
those compounds that decompose at temperatures lower than 670 K can exist as a
metastable phase at 0 K [89]. Indeed, we could not observe any decomposition of
K3TbCl6 upon cooling during experimental DSC runs. In all the K3LnCl6 series,
K3SmCl6 is the first compound that undergoes a (‘‘non reconstructive’’) solid–solid

Table 1. Temperatures and molar enthalpies of solid–solid and solid–liquid phase transitions of

congruently melting K3LnCl6 compounds

Compound Tform=K Ttrs=K Tfus=K Dform H0
m=

kJ mol� 1

Dtrs H0
m=

kJ mol� 1

Dfus H0
m=

kJ mol� 1

Ref.

K2LaCl5 – – 906 – – 78.1 [40]

– – 913 – – – [77]

– – 902 – – 115.8 [90]

K3CeCl6 811 – 908 55.4 – 39.1 [40]

807 – 905 – – – [78]

K3PrCl6 768 – 944 52.6 – 48.9 [40]

762 – 945 – – – [79]

– – 1048 – – 106.6 [91]

– – 938 – – 84.0 [90]

K3NdCl6 724 – 973 46.3 – 48.0 [40]

719 – 972 – – – [80]

– – 961 – – 94.5 [90]

K3TbCl6 – 641 1049 – 6.1 53.2 [92, 93]

– 640DTA 1049 – – – [85]

394EMF 642EMF – – 8.1 – [85]

Table 2. Temperatures and molar enthalpies of solid–solid and solid–liquid phase transitions of

congruently melting Rb3LnCl6 compounds

Compound Tform=K Ttrs=K Tfus=K DformH0
m=

kJ mol� 1

DtrsH
0
m=

kJ mol� 1

DfusH
0
m=

kJ mol� 1

Ref.

Rb3LaCl6 725 – 978 48.4 – 50.2 [40]

725 – 989 – – – [77]

Rb3CeCl6 – 411, 650 1016 – 1.5=8.5 52.4 [40]

651 – 1012 – – – [78]

Rb3PrCl6 – 398=658 1037 – 1.0=6.6 54.0 [40]

598 659 1040 – – – [79]

Rb3NdCl6 – 382=667 1060 – 0.9=6.7 58.8 [40]

547 667 1060 – – – [80]

Rb3TbCl6 – 686 –� – 7.6 –� [92, 93]

– 681DTA 1049 – – – [85]

– 663EMF – – 8.1 – [85]

� – not determined due to temperature limitation of apparatus
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phase transition at 627 K [81] after forming at 611 K. For K3TbCl6, the transition
occurs at 641 K.

From the results in Table 1, it may be concluded that the formation of the
K3LnCl6 compounds is associated to large enthalpy changes (45–55 kJ mol� 1)
for a so-called ‘‘reconstructive’’ phase transition while it corresponds to more
modest enthalpies for structural (‘‘non reconstructive’’) phase transitions.

Figure 2 shows the existence range, i.e. the stability of the Rb3LnCl6 com-
pounds: the temperatures of fusion determined in the present work (Table 2) are
plotted vs. the lanthanide ionic radii together with the temperatures of formation
available from literature [94], that were obtained from e.m.f. measurements. The
linear dependence of both temperatures of formation and of fusion on these ionic

Table 3. Temperatures and molar enthalpies of solid–solid and solid–liquid phase transitions of

congruently melting Cs3LnCl6 compounds

Compound Tform=K Ttrs=K Tfus=K DformH0
m=

kJ mol� 1

DtrsH
0
m=

kJ mol� 1

DfusH
0
m=

kJ mol� 1

Ref.

Cs3LaCl6 – 670 1055 – 7.5 58.7 [40]

– 674 1053 – – – [77]

Cs3CeCl6 – 676 1078 – 7.8 67.4 [40]

– 674 1077 – – – [78]

Cs3PrCl6 – 676 1093 – 7.6 61.1 [40]

– 677 1093 – – – [79]

Cs3NdCl6 – 678 1103 – 7.4 66.4 [40]

– 678 1108 – – – [80]

Cs3TbCl6 – 672 –� – 7.0 –� [92, 93]

– 673DTA 1153 – – – [85]

– 661EMF – – 7.2 – [85]

� – not determined due to temperature limitation of apparatus

 

 

Fig. 1. Existence range of the K3LnCl6 compounds: temperatures of formation and fusion are plotted

against ionic radius of lanthanide: open circles – Tform (this work), black circles – Tform (literature

DTA [81–83]), black triangles – Tform (literature emf [94]), open squares – Tfus (this work), black

squares – Tfus (literature DTA [81–83])
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radii is also to be noted. It indicates that the existence range of the Rb3LnCl6
decreases as the lanthanide ionic radius increases. However, it should be stressed
that our measurements do not confirm that the temperatures reported as formation
temperatures in literature always correspond to the formation of the compound.
Indeed, this was confirmed only for Rb3LaCl6 (Table 2) but not for the other
Rb3CeCl6, Rb3PrCl6, and Rb3NdCl6 rubidium compounds in which an additional
thermal effect, not reported in literature, was observed for the first time at signifi-
cantly lower temperatures. No explanation can be offered so far, but it is likely that
this effect may arise from low temperature metastable phase. For the heavier
lanthanides (starting from Pr) the corresponding compounds also undergo a struc-
tural phase transition with a related enthalpy change of 7–8 kJ mol� 1.

Among the Cs3LnCl6 compounds, Cs3LaCl6, Cs3CeCl6, and Cs3PrCl6 are the
only ones to exist at temperatures above 0 K. They form from Cs2LnCl5 and CsCl
at 462, 283, and 143 K [94]. Due to these moderate formation temperatures, de-
composition doesn’t occur upon cooling down from high temperature and meta-
stable phases are formed. All Cs3LnCl6 compounds undergo a structural phase
transition at a nearly identical temperature of about 670–680 K (Table 3). The
melting temperature increases as the lanthanide ionic radius decreases. The melting
temperature of the M3LnCl6 also increases as the ionic radius of the M alkali metal,
i.e. in the sequence K<Rb<Cs.

Heat capacity determinations were performed on the same compounds: a nor-
mal temperature dependence was observed for those compounds that formed
at higher temperatures and correspond to a ‘‘reconstructive’’ phase transition
(K3CeCl6, K3PrCl6, K3NdCl6, Rb3LaCl6) [66]. No other structural phase transition
takes place before melting and the crystal structure is of the elpasolite-type. Figure 3
gives an example for K3NdCl6.

Two different crystal structures characterize the other group of compounds, e.g.
those that form at lower temperatures (K3TbCl6, Rb3PrCl6, Rb3NdCl6, Rb3TbCl6,
and all Cs3LnCl6): monoclinic Cs3BiCl6-type and cubic elpasolite-type [94].
Heat capacity also exhibits different features: both an unusual Cp increase before

 

 

Fig. 2. Existence range of the Rb3LnCl6 compounds: temperatures of formation and fusion

are plotted against ionic radius of lanthanide: open circles – Tfus (this work), black circles – Tfus

(literature DTA [81–83]), open squares – Tform (literature emf [94])
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the structural phase transition and the occurrence of a Cp minimum are observed as
exemplified in Fig. 4.

The electrical conductivity evolution with temperature follows the same pat-
tern: in the first group of compounds a significant (two orders of magnitude)
conductivity jump is observed at the same temperature determined for the
‘‘reconstructive’’ phase transition. A second, but smaller jump happens approxi-
mately at an identical temperature for all compounds (835–845 K). This effect was
not observable in the DSC thermograms (Fig. 3).

In the second group of lower temperature-forming compounds, two conductiv-
ity regimes can also be observed but the e.c. jumps differ noticeably from what
was observable for the other compounds. The first conductivity break appears at
a different temperature for each compound, has a smaller magnitude, and also
spreads over a 40–50 K temperature range.

A second effect can be observed which, as described above, remains undetected
in the DSC thermogram. This kink in the electrical conductivity plot vs. tempera-
ture corresponds very well to the minimum in the Cp¼ f(T) curve (Fig. 4).

  

Fig. 4. Dependence of molar heat capacity and electrical conductivity of Rb3PrCl6 on temperature:

open circles – heat capacity, black circles – electrical conductivity

Fig. 3. Dependence of molar heat capacity and electrical conductivity of K3NdCl6 on temperature:

open circles – heat capacity, black circles – electrical conductivity
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Conclusion

No in depth conclusions can be given on the various phenomena observed in this
work from the observation of macroscopic properties. The validation of postulated
order–disorder transitions would require information on the microscopic level.
Powder diffraction investigations at different temperatures were recently per-
formed at the ILL in Grenoble and are currently being refined. Also cross-linked
information is expected from high temperature X-ray diffraction investigations that
are in progress.

Experimental

Synthesis of LnCl3 and M3LnCl6 compounds has been described in details elsewhere [40, 42, 92].

Great care has been taken in conditioning the very moisture-sensitive samples. All the manipulations

were carried out in an Ar-filled glove box with H2O and O2 content less than 2 ppmV. Although only a

small amount of sample (300–500 mg) was used for differential scanning calorimetry (DSC) experi-

ments, about 10 g of each compound were synthesised in order to avoid deviation from stoichiometry.

The experimental procedure for enthalpy of phase transitions and heat capacity measurements with

a differential scanning calorimeter SETARAM DSC 121 has been described in Refs. [40, 42, 54, 96].

The experimental quartz cells, 7 mm diameter and 15 mm long, were filled with the required amount of

sample and sealed under reduced pressure of Ar. The DSC experiments were conducted at heating and

cooling rates ranging 1–5 K min� 1.

Heat capacity measurements were carried out with the same SETARAM DSC 121 calorimeter by

the so called step method. In this method, small heating steps are followed by isothermal equilibration.

Each heating step of 5 K was being followed by a 400 s isothermal delay. The apparatus was calibrated

by the Joule effect, and some experiments were carried out with NIST 720 �-alumina for secondary

calibration, to monitor the Cp measurements.

Electrical conductivity measurements were performed in a capillary quartz cell by the method

described in detail elsewhere [47]. The conductivity of the compounds was measured with conductivity

meter Tacussel CD 810. Experimental runs were conducted both upon heating and cooling regimes at

rates of 1 K min� 1. Temperature and conductivity data acquisition was made with a PC interfaced to

the conductivity meter. Temperature was measured by means of a Pt=Pt-Rh thermocouple within the

accuracy of 1 K. Experimental cells were calibrated with NaCl melt [95]. The resulting cell constant

ranged from 950 to 1900 m� 1. All measurements were carried out under static Ar atmosphere.
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